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Previous work: QTL fine-mapping

A gene for genetic background in Zea mays: fine-mapping
enhancer of teosinte branched1.2 to a YABBY class

transcription factor
Yang CJ, Kursel LE, Studer AJ, Bartlett ME, Whipple CJ, Doebley JF
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Previous work: QG of domestication

The genetic architecture of teosinte catalyzed and

constrained maize domestication
Yang CJ, Samayoa LF, Bradbury PJ, Olukolu BA, Xue W, York AM, Tuholski

C . d h . MR, Wang W, Daskalska L, Neumeyer MA, Sanchez-Gonzalez J, Romay MC,
onservation and C anges N Glaubitz JC, Sun Q, Buckler ES, Holland JB, Doebley JF
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Previous work: Origin Specific Genomic Selection (OSGS)
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Origin Specific Genomic Selection: a simple process to

optimize the favorable contribution of parents to progeny
Yang CJ, Sharma R, Gorjanc G, Hearne S, Powell W, Mackay | -E



Previous work: Origin Specific Genomic Selection (OSGS)

1.00 -

Dataset: Yield from HEB-25 barley NAM (Maurer et al. 2015).

Hordeum vulgare ssp. vulgare (Barke) x ssp. spontaneum.

Unequal proportions of favorable alleles (elite > exotic).
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A: Partition the effects into favorable elite (negative) and

exotic (positive).

B: Unequal proportions of favorable alleles (elite > exotic).

C: Trait predictions using all markers, elite-only and
exotic-only favorable markers.




Previous work: Distinctness, Uniformity, Stability (DUS)

« DUS is a Plant Variety Rights (PVR) granting system by UPOV (International Union for the Protection of New Varieties of Plants).

« DUS for barley in the UK uses 28 morphological traits (e.g. season type, row number, pigmentation, etc...).
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UK spring barley varieties are getting increasingly

similar in their DUS traits (declining distance).
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Previous work: Distinctness, Uniformity, Stability (DUS)

Distinctness Uniformity Stability
Genomic DUS is cheaper and more reliable. \¢ \¢
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Previous work: R/magicdesign

Multiparental Advanced Generation Inter Cross (MAGIC)

Crafting for a better MAGIC: systematic design and test for I.E_

Multiparental Advanced Generation Inter-Cross population E' ol
Yang CJ, Edmondson RN, Piepho H-P, Powell W, Mackay | E -

L
T

; » Population with a rich recombination landscape.

oo « Create novel genetic/haplotype diversity.

« Multi-purpose: QTL (gene) mapping, genomic selection,

genetic resource.

Design

20 e Despite having many ways
to construct the crossing
schemes, many populations
use the same, single-funnel
crossing scheme (as shown
in the pedigree on the left).

Unstructured
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This creates a bias toward
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Previous work: R/magicdesign

A
Wheat-UK8 (Mackay et al 2014)
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Previous work: R/magicdesign

* R package for designing and testing various MAGIC population designs by simulations.
« Available at https://github.com/cjyang-work/magicdesign

« R/magicdesign allows us to explore more crossing schemes.

Sample output to evaluate 5 different crossing scheme.

Sample codes in R/magicdesign: e.g. proportion of recombinant haplotypes within an interval.
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Previous work: Regression of Alleles on Years (RALLY)

Logistic regression to model allele frequency changes
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Previous work: Regression of Alleles on Years (RALLY)

Simulate 50 generations of selection (S) — repeat 100X.
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Yang et al (2022)

In the presence of selection, RALLY has more mapping power than GWAS.
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Previous work: Regression of Alleles on Years (RALLY)

Similarly, simulate 50 generations of control, i.e. no selection (U).
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In the absence of selection, RALLY finds no significant markers.
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Yang et al (2022)

False positive control in RALLY uses Parametric Control = Genomic Control + Delta Control.
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Previous work: Regression of Alleles on Years (RALLY)

Analysis in the Triticeae Genome (TG) dataset.
333 winter wheat varieties, DE/FR/UK, 1948-2007.
38,852 GBS markers (m).

Fit standard ridge regression BLUP model.

Match marker effect directions to RALLY directions.

Partition the markers into sets.

A: markers with RALLY p < 0.05/m.

B: markers with RALLY 0.05/m < p < 0.05.
C: markers with RALLY p > 0.05.
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Current work: Phantom epistasis and heterosis

A quantitative genetic framework highlights the role of

Within the genetic variance (V) accounting for heterosis:
epistatic effects for grain-yield heterosis in bread wheat.

Jiang et al (2017) 16/11% Dominance (Vp)

Negative dominance and dominance-by-dominance epistatic 50/61% Additive x additive (VAA)
effects reduce grain-yield heterosis in wide crosses in wheat. o . .

Boeven ot al (2020) 21/17% Additive x dominance (V)

13/11% Dominance x dominance (Vpp)

This is contradictory to the conventional expectation of “heterosis is caused by dominance”.

19



Current work: Phantom epistasis and heterosis

A quantitative genetic framework highlights the role of

Within the genetic variance (V) accounting for heterosis:
epistatic effects for grain-yield heterosis in bread wheat.

Jiang et al (2017) 16/11% Dominance (Vp)

Negative dominance and dominance-by-dominance epistatic 50/61% Additive x additive (VAA)
effects reduce grain-yield heterosis in wide crosses in wheat. o . .

Boeven ot al (2020) 21/17% Additive x dominance (V)

13/11% Dominance x dominance (Vpp)

This is contradictory to the conventional expectation of “heterosis is caused by dominance”.
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Current work: Phantom epistasis and heterosis

variance
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Model mmer BGLR

« Use wheat hybrid marker data (Zhao et al 2015, 120 + 15 parents, 1604 hybrids, 2701 markers).
« Simulate trait with A + D (V, =1and O < D < 2A).
* Thin marker data according to its linkage with simulated QTLs.

» Estimate variance components.

Full talk is available at the Roslin CGDG YouTube channel
https://youtu.be/ThbKAG6VzGOU
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Research vision @UNL

—
.

w0 N

Improved genetic diversity management for sustainable crop breeding.

Development of major and minor/novel crop breeding.
Holistic research training.
Contribution toward UNL N2025 aims.

Aim Strategy

Increasing research impact.
Interdisciplinary collaboration.
Broadening stakeholders’ engagement.
Fostering professional development.
Promoting diversity, equity and inclusion.

Enhancing student experience.

Training, innovative research, collaboration, publications, funding.
Teamwork, Center of Plant Science Innovation, IANR communities.
Knowledge exchange and transfer, participatory breeding.
Training, alternative opportunities, progress tracking.

Training, recruitment, respect, well-being.

Research experience.

22



Short-term research plan

Computational route Experimental route

« Statistical analysis * Population development.
(collaborator/public/simulated data). « Experimental validation.

* Method development. * Method testing.

* Training. * Training.

* Immediate research outputs. « Delayed research outputs.

Establishing a research program.

23



Plan 1: multivariate OSGS (mvOSGS)

Recall previously that we can partition the favorable parental contributions using OSGS.

GS 0OSGS

EV S
Elite line u(-) Favorable allele
u from elite parent
X —— Population —» \ PR
u(+) Favorable allele
Exotic line from exotic parent
Favorable allele

L
g &

New elite lines

However, this only works with in a single trait, bi-parental setting.

An upgrade is necessary to make it more practical.
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Plan 1: multivariate OSGS (mvOSGS)

First, how do we deal with multi-trait?

There are 3 immediate options:
. Fit each trait by itself — assumes no covariances among traits.
2. Fit all traits at once using SNP-BLUP model, e.g. ridge regression, elastic net, LASSO.

3. Fit all traits at once using G-BLUP model, then apply linear transformation of u; = Z;K~!g (Ning et al 2018).

+ Yield
( >+ Drought resistance
G

- Disease resistance

Goal

- Yield
, — Drought resistance
+ Disease resistance

— >
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Plan 1: multivariate OSGS (mvOSGS)

Next, how do we deal with multi-parent?

There are two immediate options:

1. Fit genotype matrix.

ID Allele P(P1) P(P2) P(P3) Fav-P1l
1.0
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Fit multi-trat mixed
models.
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Plan 1: multivariate OSGS (mvOSGS) @ Use marker genotype

or parental haplotype.

Next, how do we deal with multi-parent? OR

genotype haplotype
There are two immediate options:

Fit multi-trait mixed
2. Fit parental haplotype matrix. models.

[}"1 = Xﬁl +E’1-[1 + £
ID M1 M2 H1 H2 H3 Fav-Hl Ve =Af: +Zus+ e,
Parent-1 G 1 -1-1 NA

-
Parent-2 G C -1 1 -1 NA 9 Identify favorable markers.
Parent-3 A T -1 -1 1 NA * - B r - -
Parent-4 A C -1 -1 -1 NA

O = OR

Progeny-1 G C -1 1 -1 0 genotype prob(p,) p; fav haplotype

Progeny-2 A C -1 -1 -1 0

Progeny-3 G T 1 -1 -1 1 a Evaluate favorable EBVs.

fav. EBY
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— trait 3
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Plan 1: multivariate OSGS (mvOSGS)

What is mvOSGS useful for?

1.0
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Genetic merit
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|
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Just like OSGS, it can be used to introgress novel alleles from exotic.

Just like OSGS, it prevents reconstitution of elite genome.
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Unlike OSGS, it accounts for multiple founders and traits.

Elite population
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Strongly favorable
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Plan 2: R/magicdesign
Founders' information >>> Create funnels >>> Simulate

It is currently very basic and would benefit from including

additional functions.

1. Founder selection — diversity measures, e.g. Manhattan
distance, F4, simulated annealing (Kirkpatrick et al 1983).

2. Crosses’ genotypes — identify and select for crosses

that would maximize unique recombinations.

Training opportunity for group members.

-
-r.-—"'"""'l -

OO VOO

¥

Selection of founder
from a diverse pool.

Simulation of MAGIC
crossing scheme.

Selection of crosses
based on genotypes.
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Plan 3: Elite-exotic MAGIC

Elite founders Exotic founders

General approach for any species.

Elite RIL Exotic RIL

Improve within elite-exotic RILs (using mvOSGS)

or improve within exotic RILs?

Elite-exotic RIL 30



Plan 3: Elite-exotic MAGIC

Elite founders Exotic founders
General approach for any species.
Other uses: QTL mapping, novel
haplotypes (transgressive segregation,
GxE, phenomics, animal feed, etc)
Elite RIL Exotic RIL

Improve within elite-exotic RILs (using mvOSGS)

or improve within exotic RILs?

Elite-exotic RIL 31



Plan 3: Elite-exotic MAGIC

Elite founders Exotic founders

playing with recombinations

rec8 mutants (Kuo et al 2018)

€ increase temp. (Morgan et al 2017)

< genotype

Elite RIL Exotic RIL

Elite-exotic RIL 32



Plan 3: Elite-exotic MAGIC

If it ain't broke, don't fix it: evaluating the effect of
increased recombination on response to selection
for wheat breeding 3

Ella Taagen ™, Katherine Jordan, Eduard Akhunov, Mark E Sorrells, Jean-Luc Jannink

G3 Genes|Genomes|Genetics, Volume 12, Issue 12, December 2022, jkac291,
https://doi.org/10.1093/g3journal/jkac291

Due to GS training model failing to catch up with the disrupted dispersion.

o IFA - B
o [ B >

Not a problem in MAGIC — new haplotypes are captured in the GS training model.
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Collaboration opportunities

See a strong commitment toward collaboration at UNL.

- |ANR communities: Computational science, Economic vitality, Healthy humans, Healthy systems, Stress biology, Science literacy.

- Center for Plant Science Innovation: combines genetics, genomics, phenomics, microbiome, immunology, bioinformatics.

— N

Agronomy and Horticulture — Animal Science — Statistics

Various exciting research in breeding and genetics.

- Genomics, phenomics, microbiome, animal nutrition, mixed model, experimental design.

- Knowledge exchange (we can offer those developed in the short-term plans).

Extension - deliver direct impact.

Training — plenty of opportunities.
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Long-term research plan

__—Grants

Publications

> Experiments

Collaborations

Training

1
1
1
What is in the future for us )
lll
'l
/]

as a research group?
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Long-term research plan

External grant funding is the key to keep the research group going.

Grant experience

« MAGS: Mutation breeding for quantitative traits with genomic selection (IAEA, 2022-2027).

« BARGAIN: Mobilizing untapped genetic diversity (RESAS, 2022-2027).

« The impact of novel crops and farming practices on the Scottish agricultural landscape (RESAS, 2022-2027).

« Development of high-value bio-products from wild-harvested and farmed Scottish seaweed (IBiolC, 2022-2023).
« Rapid domestication of purslane in a vertical farm environment (EASTBIO, student pending).

« Development of a data-driven breeding program for sugar kelp (SAIC, submitted).

EU model NA model
Federal : NSF, USDA, DoE
Project WPT = WP2 = WP3 Project Industry
Commodity board
. P WP2
Project WP1 Al A9 A3

0 we3
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Commitment toward Diversity, Equity and Inclusion (DEI)

Past experience

* Mentoring of a diverse group of undergraduates.

« Assistance in scientific presentations.

* Meetings, symposiums, conferences, publications.

« Various supports.

DEI Vision
D: open door to diversity (women, PoC, LGBT+, disabled, first-gen, more).
E: support in all areas, be aware and act on invisible disadvantages.

Going forward L : :
& l: communication, cultural exchange, be accommodating, well-being.

Every person and every interaction matters — UNL N2025 Strategic Plan
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Teaching students to learn effectively

CJ Yang

Dec 8th 2022
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Talk outline

l. Introduction

2. Teaching experience

3. Teaching vision/philosophy
4. Teaching approaches

5. Teaching examples

6. Diversity, Equity, Inclusion (DEI) commitment
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Introduction

Education & Research
2009 - 2012 Indiana University Bloomington (IU)
2012 - 2018 University of Wisconsin (UW)-Madison

BSc Biotechnology, Mathematics
PhD Genetics

2018 — 2019 Technical University of Munich (TUM) Postdoc

2019 — now Scotland’s Rural College (SRUC) Postdoc

Teaching

2013 Teaching Assistant (TA) General genetics UW-Madison
2021 Guest lecturer Plant genetics, genomics and breeding CIHEAM Zaragoza

2022  Guest lecturer Genetics improvement of crops University of Edinburgh
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Teaching experience: TA for General Genetics

Just as many of you are familiar with:

- Provide support to the students in understanding lecture materials through discussions.
- Maintain two-way communications to assess the students’ understanding.

- Made myself flexible with the students.

- Good introduction into teaching (for me).
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Teaching experience: Plant Genetics, Genomics and Breeding

- Guest lecturer for the section on “IBD, IBS, Genetic Distance, Population Structure”.

- 30 students with strong background in plant genetics and breeding.

- Online teaching — meant to take place in Zaragoza, Spain in early 2021.

- 4 hours of lecture + 4 hours of lab practical.

- Lack of visual interaction — encouraged the students to speak out or type in the chat boxes or emails.
- Had computational analyses in R for the lab practical (not easy..., need to debug).

- Spent extra time to divide up the analyses to make sure everyone was on the same page.

- Take home exercise with short answer questions — with a focus on justifications to stimulate thinking.

- Happy to see students coming with questions on their own datasets.
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Teaching experience: Genetic Improvement of Crops

- Guest lecturer for “Conventional vs Advanced Breeding Methods” and “Variety |dentification”.
- 3 students — had more chance to be interactive.

- 2 hours of lecture + 3 hours of lab practical. e i

- Breeding exercise — simulate a single cycle of selection in R.
- Challenging — walk the students through.
- Identify apple varieties according to the UPOV standards.

1 2 3
cylindrical waisted conic ovoid

4 5 6
cylindrical ellipsoid globose
3

closed or slightly open moderately open fully open

2§

A

1 P

UPOV TG/14/9
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Teaching vision/philosophy - backstory

9:00 am Biology Building 1:00 pm Ballantine Hall
_ Ej Porifera .Frank Lloyd Wright
: . ..Falling water
Undergraduate time at |U ) .
P Cnidaria
(7=
'l
Variable courses — need to
. —Q Platyhelminthes
adapt to learn quickly.
11:00 am Woodburn Hall 3:00 pm Swain Hall
d
X

CH,OH d
. © y~tdy = (x + 1)dx
OH HO
OH © CH,OH fy_ldy = f(x + 1)dx
OH OH

X2
ln(y)=7+x+C
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Teaching vision/philosophy

Teaching students to learn effectively.

l

Relevance to the UNL N2025 aims.

l

« Enhancing student experience.

* Promoting diversity, equity and inclusion.

l

* Improve students’ learning skills.

* Learning never ends.

* Everyone is unique — space to develop personal learning style.

* Everyone should have the rights to learn — outreach.
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Teaching approaches

Adaptation: adjust teaching style and course contents to match the needs.
Analogy: use of prior knowledge (example) to understand unfamiliar topics.

Assessment: gauge students’ needs and interests.
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Teaching approaches: Adaptation

Motivation
* Everyone is unique.

« Space for everyone to develop their strengths in learning.

Examples

* Small vs large class — how much can we deviate from the core syllabus?

« Students’ interest — is there any alternative teaching material that fit better? e.g. scientific literature.
« Students’ background — how advanced can we go? level-appropriateness of resources.

* Nature of the class — is there any non-class component? e.g. field trip.

* Individual vs group work — can we have both?
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Teaching approaches: Analogy

Motivation
 More relatable and attractive.

 C(Clearer framework to understand and evaluate.

Examples

« Genotype imputation — predicting weather from cloud cover and wind direction.

* CRISPR — Photoshop, Find & Replace, .., Bomb Removal Tool (nttps://www.statnews.com/2017/12/08/crispr-analogies-ranked)/)

» After introducing the analogy,
- highlight the core features
- identify the parallel points

- if needed, improve the analogy for next time

Ledford (2015)
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Teaching approaches: Assessment

Motivation

|dentify students’ progress, strength/weakness, issue, misconception, need, interest.

Circulate back to adjust pace and adapt course plan.

Examples

Final exam
Mid-term exam
Project report
Survey

Quiz

Clicker question

In-depth probe, minimal opportunity to act.

Understanding > Answer

Shallow probe, plenty of opportunity to act.
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Teaching approaches: 3A

Adaptation

Analogy \

.

A

Assessment

J

Adaptation, Analogy and Assessment form a loop.
Stimulate students’ critical thinking.

Learning skill that extends beyond the class.

As an instructor, be ready to improve.

Improvement never ends - go beyond any semester.

Continuous curriculum update, e.g. Genomic Selection, CRISPR.
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Teaching examples

The next few slides are examples of my teaching slides.
They will be presented as how | would when | am teaching.

And then I will highlight the relevant points and possible improvement.
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IBD in QTL mapping

Genotype a Obtain P(|BD) P(IBD) with founder 1

bi-palretntal IDI A G C A LI\J/IsinE hiddeg | ID1 1 1 .5 1
popuiation ID2 A C C T A . ID2 1 0 .5 0
c C T

ID3 0 0 .5 O

-

Suppose you receive a package every day. How would you tell
' i hich item is in which package?
What is a hidden . 8 which item is in which package

Markov model Assume the packages form a Markov chain (i.e. today’s
(HMM)? | package depends on yesterday’s), open the packages every
day, keep track of the contents, make an educated guess.

amaze \
~—\ Package = marker genotype

Content = P(IBD)

damaze
-~
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A short detour — what is a matrix?

Bluntly speaking, a matrix is a rectangle of numbers...

|1 4 2 1 0 0 |12 3|
5 2 3 0 10
0 0 1

A square matrix is ... square!

1 0 O
0 1 0
0 0 1

This specific example is also a

A matrix has row and column.

Column
- | 1 4 2
5 2 3

An n X m matrix has n rows and m columns.

diagonal matrix and identity matrix.

Elements of matrix M are referred as M;;

Mll M12 M13
M21 M22 M23
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Time and cost (an example in potato breeding)

Cost analysis of the application of marker-assisted

selection in potato breeding

Anthony T. Slater , Noel O. |. Cogan & John W. Forster

Molecular Breeding 32, 299-310 (2013) ‘ Cite this article

Model 1 conventional selection to G2 followed by discase

Model 2 conventional selection and G2 marker application

Modcl 4 GO MAS then conventional screening without increasing

screening the population

Intense Moderate  Mild Intense Moderate Mild Intense Moderate  Mild
GO cost GO cost GO cost
No. of seedlings® 100,000 20,000 6,667 No. of seedlings 100,000 20,000 6,667 No. of seedlings 100,000 20,000 6,667
Seedling tuber production  $300,000  $60,000 $20,001 Seedling tuber production $300,000 $60,000  $20,001 Scedling tuber production  $300,000 $60,000 $20,001
Gl cost Gl cost GO marker application
No. of seedlings 100,000 20,000 6,667 No. of seedlings 100,000 20,000 6,667 No. of seedlings 100,000 20,000 6,667
Plant spacing (m) 0.6 0.6 0.6 Plant spacing (m) 0.6 0.6 0.6 96 well plate samples 90 90 90
Row spacing (m) 0.82 0.82 0.82 Row spacing (m) 0.82 0.82 0.82 No. of plates 1111 222 74
Paddock length (m) 100 100 100 Paddock length (m) 100 100 100 Cost per plate 736 736 736
Total arca (ha) 4.92 0.98 0.33 Total arca (ha) 4.92 0.98 0.33 Total marker cost $817,778 $163,556  $54,521
Gl cost” $164,731  $32,946  $10,983 Gl cost” $164,731 $32,946  $10983  Simplex segregation 46.4 % 46.4 % 46.4 %
G1 selection rate 2% 10 % 30 % G1 selection rate 2% 10 % 30 % Gl seedlings
G2 cost G2 cost No. G1 seedlings 46,400 9,280 3,094
No. of genotypes 2,000 2,000 2,000 No. of genotypes 2,000 2,000 2,000 Plant spacing (m) 0.6 0.6 0.6
Genotype spacing (m) 5 5 5 Genotype spacing (m) 5 5 5 Row spacing (m) 0.82 0.82 0.82
Row spacing (m) 22 22 22 Row spacing (m) 22 22 22 Paddock length (m) 100 100 100
Paddock length (m) 100 100 100 Paddock length (m) 100 100 100 Total area (ha) 2.28 0.46 0.15
No. of rows 100 100 100 No. of rows 100 100 100 Gl cost* $76,435 $15,287  $5,097
‘Total area (ha) 22 22 22 Total area (ha) 22 22 22 G selection rate 2% 10 % 30 %
G2 cost® $119,552  $119,552  $119,552 G2 cost® $119,552 $119,552 $119,552 G2 cost
G2 selection rate 10 % 10 % 10 % G2 selection rate 10 % 10 % 10 % No. of genotypes 928 928 928
G3 disease screening for PCN resistance G2 marker application Plant spacing (m) 5 5 5
No. of genotypes 200 200 200 No. of genotypes 2,000 2,000 2,000 Row spacing (m) 22 22 22
Cost per cultivar $219.20  $219.20 $219.20  No. samples per 96 well plate 90 90 90 Paddock length (m) 100 100 100
PCN screening trial cost  $43,840  $43.840  $43.840  No. of plates 222 222 222 Total arca (ha) 1.02 1.02 1.02

Cost per plate 736 736 736 G2 cost” $55472 $55472  $55472
Total marker cost $16,356 $16,356  $16,356  Toual cost $1,249,685 $294,315 $135,091
Total cost $633,040 $257,248 $194,618 Total cost $605,556 $229,764 $167,133
* Phenotypic screen for disease. « MAS at G2 * MAS at GO.

« 4generations (GO - G3).
«  Cost=AUD 195k - 633k

* 3generations.

e Cost=AUD 167k - 606k

* 3generations.

- Cost=AUD 135k-1,250k ..



Bandwagon and hype

Bandwagons I, too, have known
Rex Bernardo

Theoretical and Applied Genetics 129, 2323-2332 (2016) ‘ Cite this article

5234 Accesses | 126 Citations | 35 Altmetric ‘ Metrics

Abstract

Key message

Bandwagons come in waves. A plant breeder, just like a surfer, needs to carefully

choose which waves to be on.

The hype (excitement) phase of a bandwagon is important.
Itis the best opportunity for getting funding.

In a way, bandwagon pushes advanced breeding methods

forward.

Hype

Excitement  Realization Reality

-

L1
1
)
i
1

¥
i
1
1
1

‘*—) (?) Genomewide selection

4 Linkage mapping of QTL

A
Y——> Association mapping

1991

2016
Time

Fig. 1 Life cycle of a bandwagon, with QTL mapping, association
mapping, and genomewide selection as examples. The reality level
for association mapping is low, because the approach typically lacks
power for detecting rare variants, which are what plant breeders most
often seek. The (7) before genomewide selection indicates that the
eventual level of usefulness of the procedure is still being discovered

ALL READY FOR THE
HEARING? LET'S GO OVER
THINGS ONEI MORE TIME.

*AHEM*
|

WHAT 15 THE MAIN REASON
TO FUND THIS MISSION?

IT WILL SIGNIFICANTLY ADVANCE OUR LONG-
TERM GOAL OF BETTER UNDERSTANDING
THE FORMATION AND EVOLUTION OF THE.
SOLAR SYSTEM, WHILE FULFILLING OUR
MANDATE To DEVELOP A NEW GENERATION
OF INTERPLANETARY SPACECRAFT.

AND BECAUSE
TS SPACE!

srf'mmmcz.
PEW PEW PEW!
SPACE!

k DIAL T BP;CK.

https://xkcd.com/2124




Selection intensity

We can increase selection intensity by:

1. Increasing the population size (budget limitation!). 2. Reducing the cost of genotype
evaluation (trial design, MAS, GS,

@ phenomics).
@ Wlofe) ol # i
@ D D D @ @ DD D D D @

3. Creating our target through GM/GE (maximum selection
intensity).

i ‘;@Q



Lab practical example

Next, we load the packages.

library(gtl2)
library(AlphaSimR)
library(ggplot2)

IBD calculation in a simulated bi-parental RIL population.

We set a seed number to Keep our simulation reproducible.

set.seed(99999)

In this hypothetical species, it has only one chromosome with a total genetic length of 1 Morgan. We first create the parent/founder haplotype,
fhap , by setting haploid genotype of 0 for one founder and 1 for the other founder. We then create 101 markers that are 0.01 Morgan apart, as

shown in pos .

thap <- matrix(c(rep(@,181),rep(1,181)), nrow=2, byrow=T)
pos <- seq(9®,1,0.01)
names(pos) <- paste("SITE", 1:181, sep="_")

Here, we begin with creating the founder population re using newMapPop and newPop functions from aAlphasimr . Notice that we set inbred=T
and ploidy=2L since we want to use inbred founders and diploid species for simplicity. sp is an object required by alphasimr to keep track of
various parameters in each generation.

founder <- newMapPop(genMap=list(pos),
haplotypes=1ist{fthap),
inbred=T,
ploidy=2L)

SP <- SimParam$new(founder)

F® <- newPop(founder, simParam=SP)
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Lab practical example

We will use the maize MAGIC population (Dell’Acqua et al 2015) for everything here. Conveniently, this

dataset has already been prepared as an example data in qt12 package, so we can just get it from there
directly.

maize_magic <- read_cross2("https://raw.github.com/rqtl/qtl2data/master/MaizeMAGIC/maize_magic.zip")

DIY1: Calculate IBD probabilities for maize_magic. This will take at least 5 minutes.

DIY?2: Use the plot.gp function that we just created to plot a few individuals. Since there are 529 RILs in the
maize MAGIC population and maize has 10 chromosomes, you can set the id to any value between 1 and 529,

and chr to any value between 1 and 10. Hint: The gmap argument can be set as gmap=maize_magic$gmap.

Q1: Pick two plots that you find interesting. Choose a probability threshold that you want and describe how
many founders would be identified based on that threshold. Do not worry about the specific founder since
the color contrast can be a little hard to tell.
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Online depository

Important to keep the class materials accessible!

B ¢jyang-work / lecture  Public

<> Code

(@) Issues

10 Pull requests ® Actions HE Projects [0 Wiki 0] Security |2 Insights

P main ~  lecture / conv_adv_breeding /

e e R i R e A e A o R

cjyang-work Update readme.md

BP.csv

Lecture 7 Conventional Vs_Advanced Breeding.pdf
breeding_exercise_instructions.html
breeding_exercise_v2.R
breeding_exercise_v2_modified_to_fit_old_AlphaSimR.R
example_scripts.R

readme.md

readme.md

Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload
Add files via upload

Update readme.md

8 Settings

<= Pin @ Unwatch 1 ~ % Fork 0 -

Go to file Add file = see

383844f 13 days ago Y9 History

last month
13 days ago
last month
last month
last month
last month

13 days ago

4

Folder containing files for breeding exercise and lecture slides on "conventional vs advanced breeding methods".
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Teaching opportunities at UNL

Current classes that might be relevant to my research group

* AGRO 815: Introduction to Plant Breeding and Cultivar Development
* AGRO 896: Molecular Plant Breeding

* AGRO 932: Biometrical Genetics and Plant Breeding

Opportunities for classes in:

* Introduction to plant breeding (undergraduate)

* Introduction to quantitative genetics (undergraduate)

« Case studies in plant breeding: breeding program design
« Sustainable crop production

* Novel crop breeding

* Online classes
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Commitment toward Diversity, Equity and Inclusion (DEI)

Diversity
- Remove recruitment barrier into research and education.
- Participate in outreach programs — nurture scientific interest and bridge the gaps in HE.

- Be active in DEl committee.

Equity
- Be an observant educator — to some extent, make use of 3A.

- Act on students’ needs — make sure everyone is on the same learning ground.

Inclusion
- Engage with students.

- Avoid “fitting the students into a box".

Important to maintain modesty and humility
DEI standards evolve over time — flexible and stay up to date
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